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1. Introduction

T -odd effects in hard QCD processes have been attracting our attentions for more than

30 years, but no experimental verification of the predictions [1 – 9] has been presented yet.

T -odd observables change sign under the operation of reversing both the spatial momenta

and the spins of the all the particles without interchanging initial and final states; see

refs. [10, 4] for details.1 In T -invariant theories like perturbative QCD, the T -odd effects

arise due to the re-scattering phase, or the absorptive part of the amplitudes, which appears

in the loop level. Such T -odd quantities in hard processes can be predicted in perturbative

QCD, and should be tested experimentally.

Since de Rújula et al. proposed to measure T -odd effects as an experimental test of the

non-abelian nature of QCD in e+e− → Υ → ggg with a longitudinally polarized beam [1],

several theoretical studies have been performed for the quark and gluon processes with an

electroweak current. They can be classified into three types:

1. Three jets in e+e− annihilation with a longitudinally polarized beam, e+e− → qq̄g [2,

7, 9].

1
T -odd effects are sometimes referred to as näıve-T -odd [11] or TN -odd [9] in order to distinguish them

from the genuine time-reversal operation T , which exchanges the initial and the final states.
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2. Semi-inclusive deep-inelastic neutrino [3] or longitudinally polarized electron [4, 12]

scattering, ℓp → ℓ′hX.

3. Drell-Yan-type process, pp̄ → γ∗/W/Z + jet + X. References [5, 13, 14] considered

single-spin asymmetry in the Drell-Yan process with longitudinally polarized proton

beam, while T -odd effects without spin measurement were studied in W -jet [6, 11]

and Z-jet [8] events at hadron colliders.

The absorptive parts of the relevant one-loop amplitudes in these three processes are related

to each other through crossing [15]. In addition to above three processes, there also exists

another T -odd observable, the normal polariation in top-quark pair-production at e+e−

and hadron colliders [16 – 21].

Observations of T -odd effects in hard processes are a challenging task since they do

not appear at the tree level. So far, no experimental test has been made for the above

processes [22 – 24], even though large non-perturbative T -odd effects have been observed in

hadron spin physics [23, 25]. We may note that the possibility to observe the perturbative

T -odd effects in W -jet events at the Tevatron run II has recently been pointed out in [11].

In this article, we propose a new measurement of the T -odd effects in radiative top-

quark decays. We study T -odd angular distributions of W -decay leptons in the radiative

top-quark decay into a bottom quark, a W boson, and a gluon:

t → b + W+ + g; W+ → ℓ+ + νℓ. (1.1)

Due to the large mass, mt = 175 GeV, top-quark decay is not affected by hadronization,

and hence it can be dictated by perturbative QCD. Even though the correction up to

O(α2
s) to the total decay width of the top quark is known [26], the correction to the W -

decay lepton angular distribution in the top quark decay has been calculated only up to

O(αs) [27]. We calculate the absorptive part of the amplitudes for the t → bWg process in

the one-loop order O(α2
s), which gives the leading contribution to the T -odd asymmetries.

The predictions may be tested at future colliders such as the Large Hadron Collider (LHC)

and the International Linear Collider (ILC).

The article is organized as follows. In section 2, we present the lepton decay distribution

using the density matrices of the t → bWg decay and the W → ℓν decay, and give

the general kinematics relevant to our analysis. In section 3, after showing the T -even

lepton angular distributions, we discuss the T -odd distributions in detail, and study their

observability at future experiments. In section 4, we consider radiative decays of polarized

top-quarks and discuss another T -odd observable, the angular correlation between the top-

quark spin and the decay plane. Section 5 is devoted to a summary. In appendix A, we give

the absorptive part of the t → bWg decay amplitudes in the one-loop order by using the

Feynman parameter integral calculation. In appendix B, we present our results in terms

of the loop scalar functions.

2. t → bW +g decay density matrix

The decay rate of the process (1.1) can be expressed in terms of the t → bWg decay and

– 2 –
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Figure 1: Schematic view of the coordinate system for the t → bW+g decay, followed by the

W+ → ℓ+νℓ decay.

the W → ℓν decay density matrices in the narrow width approximation of the W boson,

dΓ =
∑

λ,λ′

dΓt
λλ′

1

ΓW
dΓW

λλ′ , (2.1)

where ΓW is the total decay width of W boson, and λ, λ′ = ±, 0 denote the W -boson

helicity. The 3 × 3 W -polarization density matrix for the W+ decay reads

1

ΓW

dΓW
λλ′

d cos θ dφ
= Bℓ

3

8π
Lλλ′(θ, φ) (2.2)

with the decay branching fraction Bℓ = B(W → ℓν) and

Lλλ′(θ, φ) =









(1+cos θ)2

2
sin θ(1+cos θ)√

2
eiφ sin2θ

2 e2iφ

sin θ(1+cos θ)√
2

e−iφ sin2 θ sin θ(1−cos θ)√
2

eiφ

sin2θ
2 e−2iφ sin θ(1−cos θ)√

2
e−iφ (1−cos θ)2

2









. (2.3)

Here, the 3×3 matrices are for λ, λ′ = (+, 0,−), and the polar and azimuthal angles (θ, φ)

of the charged lepton are defined in the rest frame of the W boson, where the z-axis is

taken along the W momentum direction in the rest frame of the top quark. The x-axis

(θ = π/2, φ = 0) is in the t → bWg decay plane as explained below.

Before we show the t → bWg density matrix dΓt
λλ′ , we define the kinematical variables

for the process

t(pt, σt) → b(pb, σb) + W+(q, λ) + g(pg, σg), (2.4)

where the four-momenta of each particle are defined in the top rest frame as

pµ
t = (mt, 0, 0, 0),

pµ
b = (Eb, pb sin θ̂, 0, pb cos θ̂),

qµ = (EW , 0, 0, q),

pµ
g = (Eg, pg,x, 0, pg,z). (2.5)

Helicities of each particle, σt, σb, λ and σg, are also defined in the top rest frame. The

z-axis is taken along the W boson momentum, and y-axis is along ~q × ~pb, the normal of

the decay plane; see figure 1.
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Figure 2: Feynman diagrams for the t → bWg decay [30]. The top two are the tree level diagrams,

and the bottom six are the one-loop level diagrams contributing to the absorptive part of the

amplitudes.

We define the dimensionless variables as

(z1, z2, z3) ≡
(

2pt ·pb

m2
t

,
2pt ·q
m2

t

,
2pt ·pg

m2
t

)

=

(

2Eb

mt
,
2EW

mt
,
2Eg

mt

)

. (2.6)

These are the energy fraction of b, W and g, respectively, and satisfy the energy conserva-

tion condition, z1 + z2 + z3 = 2. The kinematically allowed region is given in the (z1, z2)

plane by

2y ≤ z1 ≤ 1 − x2 + y2, 2x ≤ z2 ≤ 1 + x2 − y2,

(z2
1 − 4y2)(z2

2 − 4x2) −
[

2 + 2x2 + 2y2 − 2z1 − 2z2 + z1z2

]2 ≥ 0, (2.7)

with x = mW /mt and y = mb/mt.

The mass of the b-quark is kept to be finite (mb = 4 GeV) for the tree-level calculation.

However, as we will see later, the effect of the mass is negligible. Thus, for the calculation

of the T -odd distributions, we take the mb = 0 limit, which simplifies the framework of

the one-loop calculation. In the case that we ignore the b-quark mass, there appears a

kinematical singularity in the z2 → 1 + x2 limit, when the b-quark and gluon momenta

are collinear. An infra-red (IR) singularity also exists at z3 → 0, where the emitted gluon

becomes soft.

Let us now present the density matrix for the t → bWg decay, dΓt
λλ′ in eq. (2.1). The

matrix elements of the t → bWg decay are expressed as

iMλ =
−iggs√

2
taVtb ū(pb, σb) T µα u(pt, σt) ǫ∗µ(q, λ) ǫa∗

α (pg, σg), (2.8)

where g and gs are the weak and strong coupling constants, ta is the SU(3) color matrix,

and Vtb is the Cabibbo-Kobayashi-Maskawa (CKM) matrix element. The tensor T µα is a

4 × 4 matrix in the spinor space. The leading contribution to the real part of T µα comes

from the tree diagrams [28, 29], while the imaginary part appears first in the one-loop

diagrams. All the tree and the one-loop diagrams needed in our analysis are shown in

figure 2. We give details of our calculation of T µα in the appendices.
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Factorizing the color factor and the coupling constants, we define the reduced density

matrix Hλλ′ as
∑

MλM∗
λ′ = 4

√
2πGF αsm

2
W |Vtb|2CF · Hλλ′ . (2.9)

The summation stands for the sum/average of the spins of the particles except W boson

and the sum/average of colors. In terms of Hλλ′ , the density matrix dΓt
λλ′ is expressed as

dΓt
λλ′

dz1dz2
=

GF αsm
3
t x

2|Vtb|2CF

32
√

2π2
Hλλ′(z1, z2). (2.10)

Finally, combining the top- and W -decay density matrices in eqs. (2.10) and (2.2), the

decay distribution in eq. (2.1) is expressed as

dΓ

dz1dz2 d cos θ dφ
=

3BℓGF αsm
3
t x

2|Vtb|2CF

256
√

2π3

∑

λ,λ′

Hλλ′(z1, z2)Lλλ′(θ, φ) (2.11)

≡ K
[

F1(1 + cos2 θ) + F2(1 − 3 cos2 θ) + F3 sin 2θ cos φ + F4 sin2 θ cos 2φ

+ F5 cos θ + F6 sin θ cos φ + F7 sin θ sin φ + F8 sin 2θ sin φ + F9 sin2 θ sin 2φ
]

,

where K is the factor in front of the summation symbol in the first line. The nine inde-

pendent functions F1−9(z1, z2) are defined in terms of the reduced density matrices Hλλ′

as

F1 =
1

2
(H++ + H00 + H−−) , F6 =

1√
2

(H+0 + H0+ + H−0 + H0−) ,

F2 =
1

2
H00, F7 =

i√
2

(H+0 − H0+ − H−0 + H0−) ,

F3 =
1

2
√

2
(H+0 + H0+ − H−0 − H0−) , F8 =

i

2
√

2
(H+0 − H0+ + H−0 − H0−) ,

F4 =
1

2
(H+− + H−+) , F9 =

i

2
(H+− − H−+) .

F5 = H++ − H−−, (2.12)

The terms independent of the azimuthal angle, F1, F2 and F5, are provided from the diag-

onal terms of the density matrix, while the azimuthal-angle dependent terms are provided

from the off-diagonal terms, i.e. the interference between the different polarization states

of the W boson. The terms F1 through F6 are T -even, and the leading contribution comes

from the tree diagrams. On the other hand, F7 to F9 are T -odd, and they receive the

leading contribution from the absorptive part of the one-loop amplitudes through the in-

terference with the tree amplitudes. Parity transformation changes the sign of φ, thus

F7,8,9 are not only T -odd but also parity-odd (P -odd). Assuming CP invariance, the lep-

ton angular distribution for the anti-top-quark decay, t̄ → b̄W−g; W− → ℓ−ν̄ℓ, can be

obtained by changing the sign of F7,8,9 in eq. (2.11).

3. Lepton decay distributions

In this section, we present numerical results for the T -even and T -odd lepton angular

distributions in radiative top-quark decays. Note that, in our leading-order analysis, the

T -even distributions F1−6 are O(αs), while T -odd distributions F7,8,9 are O(α2
s).
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Figure 3: Contour plot of F1(z1, z2) in the tree level. z1 and z2 are the energy fraction of the

bottom quark and the W boson, respectively. The dotted line denotes the kinematical boundary;

the dashed and dot-dashed lines are for the kinematical cuts for kT > 20GeV and cos θbg > −0.9,

respectively. The thick contours are obtained for mb = 4GeV, whereas the thin contours are for

mb = 0.

3.1 T -even distributions

In figure 3, we show a contour plot of the function F1(z1, z2), which gives the total rate

of the t → bWg decay, dΓ/dz1dz2 = K (16π/3)F1 , after integrating over the lepton decay

angles. The kinematical boundary given by eq. (2.7) for mt = 175 GeV, mW = 80.4 GeV

and mb = 4 GeV (mb = 0) is shown by the thick (thin) dotted line. To avoid the IR region

near z2 = z2max ∼ 1.2, we impose the kT cut,

k2
T ≡ 2min(p2

b , p
2
g) (1 − cos θbg) > (20GeV)2, (3.1)

where θbg is the angle between the b-quark and gluon momenta in the top rest frame, shown

by the dashed line. Furthermore, we apply the following cut:

cos θbg > −0.9, (3.2)

shown by the dot-dashed line, in order to avoid the configuration where the b-quark and

gluon jets are anti-collinear. These two cuts enable us to define the top decay plane

spanned by ~pb and ~pg, from which the azimuthal angle φ of the decay lepton is measured

(see figure 1).

The decay rate is large in the region where z2 is large, because of the collinear sin-

gularity in the mb = 0 limit. As the figure shows, the effect of the b-quark mass is small

for the decay-rate itself, however the kinematical boundary as well as the cuts are changed

slightly by the mass.
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Next, we define the differential asymmetries as

Ai(z2) ≡
∫

dz1 Fi(z1, z2)
/

∫

dz1 F1(z1, z2) (3.3)

for i = 2 to 9. In figure 4, we show the z2 distributions of the T -even asymmetries

A2,...,6 at the tree level for the three z1 regions: z1min < z1 < 0.4, 0.4 < z1 < 0.55 and

0.55 < z1 < z1max, with the same kinematical cuts as in figure 3. The z2 distributions of

F1 for the same z1 regions are also shown as a reference. In all the figures, predictions for

mb = 4GeV and the massless b-quark limit are shown by thick and thin lines, respectively.

Except for F1, the lines for mb = 4GeV and those for mb = 0 are almost degenerated. Small

difference in F1 at large z2 and small z1 arises because of the difference in the kinematical

boundary, as shown in figure 3.

The asymmetries in the polar angular distribution A2,5 are predicted to be large, more

than the azimuthal angular asymmetries A3,4,6. When the W -boson energy (i.e., z2) is

large, the kinematics of the t → bWg three-body decays becomes close to that of the

t → bW two-body decays. Near z2 = z2max, this leads to the well known results: (i) The

asymmetry A2, which dictates the fraction of the decay to the longitudinally polarized

W bosons, reaches 0.7. (ii) The fraction to the left-handed W bosons is ∼ 0.3, and the

fraction to the right-handed W bosons is negligible. This corresponds to the asymmetry

A5 ∝ H++−H−− ∼ −H−−. The difference of the factor 2 comes from the normalization in

eq. (2.12). (iii) The A3,4,6 asymmetries vanish in the large z2 region, since the interference

between the different helicity states of the W boson is very small.

On the other hand, the smaller z2 becomes, the larger the gluon contribution becomes.

Due to this gluon contribution, the decay to the right-handed W boson is allowed, even

in the mb = 0 limit, which causes the deviation from the values in the two-body decay

process.

3.2 T -odd distributions

Let us now turn to the T -odd asymmetries, the main subject of this article. As mentioned

above, the leading contribution to the T -odd effects in the top-quark decay (1.1) comes

from the interference between the tree diagrams and the absorptive part of the six one-loop

diagrams in figure 2. The one-loop amplitudes are calculated in the mb = 0 limit, however

the kinematical boundary as well as the cuts are given for mb = 4 GeV. We set the QCD

coupling constant as αs = αs(kTmin =20GeV) = 0.15. The details of our calculation of the

one-loop amplitudes are given in the appendices.

Figure 5 shows the asymmetry distributions as figure 4, but for A7,8,9 in eq. (3.3). We

found that the asymmetry A7 is positive at a few percent level, and tends to be larger with

increasing z1 and decreasing z2. A8 is also positive but less than 1% in magnitude, and

is large for the intermediate values of z1 and z2. A9 is the smallest in magnitude and is

order permill. It takes positive value for large z1 and small z2, but changes the sign by

decreasing z1 and increasing z2. The dips which appear in the figure are caused by the

kinematical cuts given in eqs. (3.1) and (3.2).
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Figure 4: The z2 distributions of the T -even asymmetries A2 to A6 at the tree level. Three cases

for the different z1 regions with the same kinematical cuts as figure 3 are shown. Thick lines are

for mb = 4GeV, and thin lines are for mb = 0. The distributions of F1 integrated for z1 are also

shown as a reference.

In figure 6, we show the contribution to the A7 asymmetry for 0.55 < z1 < z1max from

the individual one-loop diagrams of figure 2 in the Feynman gauge. The sum of the dia-

grams (c) and (f), which have the gluon three-point-vertex, gives negative contribution to

A7. On the other hand, all the other diagrams give positive contribution to the asymmetry.

The diagrams (a) and (d) with s-channel b-quark exchange diagrams give the dominant

contribution, which make the total asymmetry positive. The diagrams (b) and (e), which

contain the u-channel b-quark exchange in the final-state rescattering, are found to give

small contribution. On the other hand, the main contribution for A8 comes from the dia-

grams (c)+(f), while for A9, the contributions from (a)+(d) and (c)+(f) are comparable

in size.
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Figure 5: The same as figure 4, but for the T -odd asymmetries A7,8,9 at the one-loop level.

3.3 Up-down asymmetry for the LHC experiment

In order to help finding an evidence of the T -odd asymmetries in experiments, we discuss a

simple observable for the T -odd asymmetry. We define the up-down asymmetry AUD with

respect to the top decay plane as

AUD ≡ [N(0 < φ < π) − N(π < φ < 2π)] /Nsum. (3.4)

It is defined as the asymmetry between the number of events having the charged lepton

momentum with positive and negative y component. AUD reflects the property of A7, since

sin θ sinφ is positive for 0 < φ < π while negative for π < φ < 2π.

We estimate AUD, and its statistical errors for 820,000 top-quark signal events which

is expected at the LHC one-year run with L = 10 fb−1 after the event selection for the

single lepton plus jets channel pp → tt̄ → bb̄WW → bb̄(ℓν)(jj) [31]. Taking into account

the fraction2 of t → bWg events that satisfy the kinematical cuts in eqs. (3.1) and (3.2),

a sample of about 72,000 events for t → bWg followed by W → ℓν would be expected. In

figure 7 (left), we display the distribution of the event sample in the z1-z2 plane. In order

to see the T -odd asymmetries effectively, we divide the kinematical region into eight bins

using the jet-energy ordering and the opening angle between the two jets in the top rest

frame as

(I) z1 > z3 cos θbg < −0.5, (V) z1 < z3 cos θbg < −0.5,

(II) z1 > z3 −0.5 < cos θbg < 0, (VI) z1 < z3 −0.5 < cos θbg < 0,

(III) z1 > z3 0 < cos θbg < 0.5, (VII) z1 < z3 0 < cos θbg < 0.5,

(IV) z1 > z3 0.5 < cos θbg, (VIII) z1 < z3 0.5 < cos θbg. (3.5)

2For the total decay width of the top quark, we use the calculation including the O(αs) QCD correc-

tions [26].
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Figure 6: The contribution to the A7 asymmetry for 0.55<z1<z1max from the individual one-loop

diagrams. (a)+(d), (b)+(e) and (c)+(f) contributions in Feynman gauge are plotted in dashed,

dotted and dotted-dashed line. Total asymmetry is also plotted in solid line, as a reference.

In the figure, the number of events in each bin are given in an unit of thousands. As in

figure 3, a large number of events is expected for the region where both z1 and z2 are large,

namely (III) and (IV).

The top and middle plots in figure 7 (right) show the up-down asymmetries with ex-

pected statistical error-bars for each of the eight bins, for the LHC one-year run. The error

is estimated from δA =
√

(1 − A2)/Nsum for each bin. The magnitude of the asymmetry

is larger for the (I)-(IV) bins than for the (V)-(VIII) bins, and increases with the opening

angle θbg, as is expected from the z1 and z2 dependences of A7 in figure 5. The asymmetry

reaches 3% at the bin-(I) where, however, the event yield is not high.

In the bottom plot in figure 7 (right), we also consider the case where the top-pair

productions are identified without a b-jet-tagging. In this case, instead of defining y-axis

by the direction ~q × ~pb, we define the y-axis along ~q × ~pj1, where pj1 is the momentum of

the jet whose energy is large than the other in the top-quark rest frame. This asymmetry

corresponds to AUD for z1 > z3 (top) minus AUD for z1 < z3 (middle). Because of the

cancellation, the magnitude of the asymmetry decreases, but it remains finite even without

b-jet identifications.

4. Polarized top-quark decays

Although we have considered the decay of unpolarized top-quarks so far, the top-quarks

produced singly by the electroweak interactions at hadron colliders or the top-quark pairs

produced in e+e− colliders can be highly polarized. Therefore, it may be useful to analyze

the polarized top-quark decay.

In this section, we show that, when a top-quark is polarized, i) there exists another

type of T -odd observable, the angular correlation between the top-spin direction and the
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Figure 7: (Left) Estimation of the event yields for the LHC one-year run is shown in each bin

defined in (3.5). (Right) Up-down asymmetries AUD defined in eq. (3.4) for the eight bins (top and

middle) and AUD for the case without b-tagging (bottom). cos θbg is the opening angle between the

two jets in the top rest frame. Error bars are estimated for the expected event yields shown in the

left figure.

top decay plane, and ii) the lepton angular distributions discussed in the previous section

are modified.3

First, we discuss another type of T -odd observable in radiative decays of the polarized

top-quarks, namely, the angular correlation between the top-quark spin and the decay

plane.

We define the angles between the top-quark spin direction and the decay plane in the

top-quark rest-frame as shown in figure 8. The z-axis is chosen along the W -momentum

direction, and the x-axis is chosen along the ~pb direction in the (~pb, ~pg) plane. The polar

and azimuthal angles, θP and φP , respectively, define the direction of the top-quark spin

~st.

The decay distribution is now characterized by the two angles as well as z1 and z2:

dΓ

dz1dz2d cos θP dφP
=

GF αsm
3
t x

2|Vtb|2CF

64
√

2π3

×
[

FP1 + FP2 cos θP + FP3 sin θP cos φP + FP4 sin θP sin φP

]

. (4.1)

The structure functions FP1−P4(z1, z2) are obtained from the t → bWg matrix elements

Mσt
, which are defined in eq. (2.8), but we now retain the top-quark helicity σt instead of

3We thank the referee of this article for pointing out the existence of another T -odd observable in the

polarized top-quark decay, and suggesting its relation to the normal polarization in the top-quark pair-

production.
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the W -helicity (λ):

FP1 =
1

2

∑
(

|M+|2 + |M−|2
)

, FP3 =
1

2

∑
(

M∗
+M− + M∗

−M+

)

,

FP2 =
1

2

∑
(

|M+|2 − |M−|2
)

, FP4 =
i

2

∑
(

M∗
+M− −M∗

−M+

)

. (4.2)

The summation stands for the sum of the spins of all the particles but the top-quark, and

the sum/average of colors. The spin-independent term FP1 is identical to F1 in eq. (2.12),

including the normalization factor. FP1 is T -even and P -even, while FP2 and FP3 are T -

even and P -odd. FP4 is T -odd and P -even. The leading-order contribution to the functions

FP1 to FP3 comes from the tree-level amplitudes. On the other hand, the leading-order

contribution to FP4 comes from the interference between the tree amplitudes and the

absorptive part of the one-loop amplitudes, just the same as F7,8,9 in eq. (2.12). Note

that FP4 is proportional to the expectation value of the triple product of the three vectors

〈~st · ~q× ~pb〉, just like F7 is proportional to 〈~sW · ~q× ~pb〉. The corresponding distribution for

the anti-top-quark decay can be obtained by reversing the sign of FP2 and FP3 in eq. (4.1),

when the CP is a good symmetry.

We define the ratios of the correlation functions Fi for i = P2-P4 to the spin-

independent term FP1 as

Ai(z2) =

∫

dz1Fi(z1, z2)

/
∫

dz1FP1(z1, z2). (4.3)

Each correlation function corresponds to the expectation value of the component of the

top-quark spin-vector as

〈~st〉 =
1

3
(AP3, AP4, AP2) . (4.4)

In figure 9, the z2 distributions of AP2,P3 at the tree level and AP4 at the one-loop

level are shown, where the three z1 regions and the kinematical cuts are the same as those

in figure 4. The T -even P -odd asymmetries AP2 and AP3 are as large as a few times 10%

in magnitude, while the T -odd P -even asymmetry AP4 is less than 1%. This means that

the top-quark spin lies almost in the decay plane, or, the decay plane tends to contain
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Figure 9: The z2 distributions of the angular correlation functions defined in eq. (4.3), AP2,P3 at

the tree level and AP4 at the one-loop level, where the three z1 regions and the kinematical cuts

are the same as in figure 4.

the top-quark spin. The z1 dependence of AP4 is similar to the T -odd lepton angular

asymmetry A7 in figure 5.

Next, we consider the T -odd lepton angular asymmetry A7 again, but in the decay

of polarized top-quarks. Since the degree of the normal polarization to the decay plane

is quite small as shown in figure 9, for simplicity, the case that the top-quark spin lies

in the decay plane, φP = 0◦, is considered. In figure 10, we show the A7 asymmetry for

0.55 < z1 < z1max, where the spin direction of the top-quark is set at θP = 0◦ and 180◦.

The asymmetry is enhanced when θP = 0◦, but reduced when θP = 180◦. It follows from

the fact that the decay amplitude to the right-handed W -boson is larger for θP = 0◦ than

for θP = 180◦.

Finally, we briefly mention T -odd effects induced by the absorptive part of the top-pair

production amplitudes, which produce the normal polarization with respect to the scatter-

ing plane. The one-loop calculations have been done for e+e− and hadron colliders [16 – 21],

however, the degree of polarization is estimated to be quite small.

We examine if the up-down asymmetry with respect to the decay plane of the top-

quarks, studied in this paper, can contribute to the T -odd asymmetry about the scattering

plane in the top-pair production process, when the production and decay processes are

considered in total. When the top-quark has normal polarization with respect to the

scattering plane, because the charged lepton prefers to be emitted in the direction of the

top-quark spin, the expectation value of the inner product of the top-quark spin direction

and the lepton direction 〈~st · ~pℓ〉 is positive. On the other hand, considering the T -odd

effects in the top-decay process, since the AP4 asymmetry in figure 9 is slightly positive,

the expectation value of the triple product 〈~st ·~q×~pb〉 is slightly positive. In addition, since

A7 in figure 5 is positive, the expectation value of 〈~pℓ · ~q × ~pb〉 is also positive. Therefore,

the T -odd effect in the top decay process gives positive correction to 〈~st · ~pℓ〉, i.e. additive
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and 180◦ (dotted). As a reference, the unpolarized case is also plotted in solid line.

to the original asymmetry due to the T -odd polarization of the top-quark normal to the

scattering plane. However the size should be negligible, because the degree of the normal

polarization and the T -odd correlation AP4 are estimated to be very small.

Similarly, we find that the T -odd effect in the top-quark production process provides

additive but negligible contribution to the T -odd asymmetry in the decay process with

respect to the top decay plane.

5. Summary

In this article, we studied the top quark decay into a bottom quark and a W boson

accompanied by one gluon emission, and calculated the absorptive part of the t → bWg

decay amplitudes at the one-loop level. We then estimated the leading-order contribution

to the T -odd asymmetries of the lepton angular distribution in the t → bWg decay followed

by leptonic decay of the W boson.

For completeness, we also discussed the T -even asymmetries at the tree level O(αs),

and found that the fraction to the right-handed W boson increases in the small W -boson

energy region. As for the T -odd asymmetries, the largest asymmetry is predicted for A7 at

a few percent level, and the other asymmetries (A8 and A9) are found to be less than 1%.

We proposed a simple observable AUD, the up-down asymmetry with respect to the

top decay plane, which is proportional to A7. The AUD asymmetry is predicted to be at a

few percent level, which may be confirmed at the LHC with 10 fb−1.

Before closing let us mention that, for the polarized top-quark decays, there exists

another T -odd observable, the angular correlation between the top-quark spin direction

and the top decay plane. However, the size of the T -odd correlation is less than 1%, which

may be difficult to measure at future colliders.
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A. t → bW +g decay amplitudes

In this appendix, we outline our calculation of the amplitude for the t → bWg process.

Note that we present the formalism in the mb = 0 limit, because we performed the one-loop

calculation only in this limit. The extension to the massive b-quark case will be given only

for the tree-level calculation.

First, we expand the tensor T µα in eq. (2.8) as

T µα =
∑

i

ai T µα
i (A.1)

with the 20 basis tensors;

T µα
L1 = gµαq/P−/m2

t , T µα
R1 = gµαP+/mt,

T µα
L2 = γµγαq/P−/m2

t , T µα
R2 = γµγαP+/mt,

T µα
L3 = pµ

t γαP−/m2
t , T µα

R3 = pµ
t γαq/P+/m3

t ,

T µα
L4 = pµ

b γαP−/m2
t , T µα

R4 = pµ
b γαq/P+/m3

t ,

T µα
L5 = γµpα

t P−/m2
t , T µα

R5 = γµpα
t q/P+/m3

t ,

T µα
L6 = γµpα

b P−/m2
t , T µα

R6 = γµpα
b q/P+/m3

t ,

T µα
L7 = pµ

t pα
t q/P−/m4

t , T µα
R7 = pµ

t pα
t P+/m3

t ,

T µα
L8 = pµ

t pα
b q/P−/m4

t , T µα
R8 = pµ

t pα
b P+/m3

t ,

T µα
L9 = pµ

b pα
t q/P−/m4

t , T µα
R9 = pµ

b pα
t P+/m3

t ,

T µα
L10 = pµ

b pα
b q/P−/m4

t , T µα
R10 = pµ

b pα
b P+/m4

t (A.2)

where the chiral-projection operators are P± = 1
2(1±γ5). The summation runs for i = {L1-

L10,R1-R10}. The coefficients ai are calculated perturbatively,

ai = bi + iαsci + · · · , (A.3)

where bi is the tree-level contribution, and ci is the one-loop contribution to the absorptive

part.

The 20 coefficients satisfy the following sum rules, because of the gauge invariance of

QCD (pgα
T µα = 0),

2(1 − y2)aL2 + z3aL5 + y2aL6 + 2aR2 = 0,

2aL2 + 2aR2 − z3aR5 − y2aR6 = 0,
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2aL1 − 2aL3 + z3aL7 + y2aL8 − 2aR3 = 0,

2aL3 + 2aR1 + 2(1 − y2)aR3 + z3aR7 + y2aR8 = 0,

2aL1 + 4aL2 + 2aL4 − z3aL9 − y2aL10 + 2aR4 = 0,

2aL4 − 2aR1 − 4aR2 + 2(1 − y2)aR4 + z3aR9 + y2aR10 = 0, (A.4)

where we defined y2 = 1−z2+x2. In appendices A.1, A.2 and B, we present the following

14 coefficients; i = L1-L4,L6,L8,L10,R1-R4,R6,R8,R10. The remaining 6 coefficients;

i = L5,L7,L9,R5,R7,R9 are then obtained from the above identities, eq. (A.4)4.

Counting the number of the physical amplitudes, only the twelve among the 14 coef-

ficients are independent [32, 4]. Using the Dirac matrix identity [32], the terms with T µα
L10

and T µα
R10 can be removed by the following replacements,

aL1 → aL1 +
1

2
(y3 − z1z2)aL10 −

1

2
z1aR10,

aL2 → aL2 −
1

2
(y3 − z1z2)aL10 +

1

2
z1aR10,

aL3 → aL3 −
1

2
z2y3aL10 −

1

2
y3aR10,

aL4 → aL4 +
1

2
(z2

2 − 2x2)aL10 +
1

2
z2aR10,

aL6 → aL6 +
1

2
{(z1 − z2)z2 + 2x2}aL10 +

1

2
(z1 − z2)aR10,

aL8 → aL8 + z2aL10 + aR10,

aR1 → aR1 +
1

2
z1x

2aL10 +
1

2
y3aR10,

aR2 → aR2 −
1

2
z1x

2aL10 −
1

2
y3aR10,

aR3 → aR3 +
1

2
y3aL10,

aR4 → aR4 −
1

2
z2aL10 − aR10,

aR6 → aR6 −
1

2
(z1 − z2)aL10 + aR10,

aR8 → aR8 − x2aL10, (A.5)

with y3 = 1 − z3 − x2.

A.1 Tree-level results

At the tree level, the amplitude has the contributions from two Feynman diagrams (fig-

ure 2),

T µα
tree = γα 1

p/t − q/ + iǫ
γµP− + γµP−

1

p/t − p/g − mt + iǫ
γα. (A.6)

4To verify our results, we have calculated all the 20 coefficients independently and checked that these

satisfy the eqs. (A.4).
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The decomposition in terms of T µα
i in (A.2) gives

bL1 = bL3 = −bR1 = 2xb, bL4 = −bL6 = 2xt, −bL2 = bR2 = xt + xb, (A.7)

where xt ≡ m2
t /(−2pt · pg) and xb ≡ m2

t /2pb · pg.

For the massive b-quark case, two more components,

T µα
M1 = gµαP−/mt, T µα

M2 = γµγαP−/mt, (A.8)

with the coefficients bM1 = 2yxb, bM2 = −y(xt + xb) and y = mb/mt, must be added to

eq. (A.1).

A.2 One-loop results

At the one-loop level, the absorptive part emerges from the six diagrams for the t → bWg

decay, shown in figure 2. We write the one-loop coefficients in eq. (A.3) as the sum of these

diagrammatic contributions,

ci = c
(a)
i + c

(b)
i + c

(c)
i + c

(d)
i + c

(e)
i + c

(f)
i . (A.9)

The analytic expressions of the coefficients are obtained for each diagram by performing

the standard Feynman integrals. Our expression contains functions with a one-parameter

integral, which can easily be evaluated.

In the next appendix, we also show the results of ci in the loop scalar function method

as an alternative expression. We checked that the numerical results of the two calculations

agree completely.

With the color factor CF = 4/3, CA = 3 and C1 = CF − CA/2 = −1/6, the one-loop

coefficients for each diagram are found as below;

• diagram-(a)

−c
(a)
L1 = 2c

(a)
L2 = −c

(a)
L3 = c

(a)
R1 = −2c

(a)
R2 =

CF

2
xb. (A.10)

• diagram-(b)

−2c
(b)
L1 = 4c

(b)
L2 = −2c

(b)
L3 = c

(b)
L6 = 2c

(b)
R1 = −4c

(b)
R2 = C1xb. (A.11)

• diagram-(c)

−c
(c)
L1 = 2c

(c)
L2 = −c

(c)
L3 = 2c

(c)
L6 = c

(c)
R1 = −2c

(c)
R2 =

CA

2
xb

(

ln ǫ2 + lnxb

)

, (A.12)

where ǫ = mg/mt. The gluon mass mg is introduced to regulate the IR singularity.

We keep ǫ only in the singular parts and take the ǫ → 0 limit elsewhere.
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• diagram-(d)

c
(d)
L1 = −2c

(d)
L2 = −CF

[

xb(2 − z2)I10 − (3 − z2)I21 +
2 − y2

2
I22

]

,

c
(d)
L3 = −CF

[

xb(1 − x2)I10 − (1 − x2)I21 −
y2

2
I22 − x2y2 (I33 − I34)

]

,

c
(d)
R1 = −2c

(d)
R2 = CF

[

xb(1 − x2)I10 − (2 − x2)I21 +
2 − y2

2
I22

]

,

c
(d)
R3 = CF [I21 − I22 − y2 (I32 − I33)] . (A.13)

Here, Imn is defined by the integral

Imn =

∫ 1

0

tn dt

[1 − z2t + x2t2]m
. (A.14)

• diagram-(e)

c
(e)
L1 = C1

[

xb ln(z2
1xb) − (1 + z1)J110 + (z2 − x2)J111 +

y2
2

2
J213 − z1L2

]

,

c
(e)
L2 = −1

2
c
(e)
L1 +

C1

2
y2

[

z1(J121 − J122) + J211 − 2J212 +
2 − y2

2
J213

]

,

c
(e)
L3 = C1

[

xb ln(z2
1xb) − I10 + y2I21 − (1 + z1)J110 + (z2 − x2)J111 + y2

2J121

+ y2J211 −
y2(2 − y2)

2
J212 − z1L2

]

,

c
(e)
L4 = C1

[

J110 − (z2 − x2)J111 − y2(1 − z2)J121 −
y2(y2 + 2x2)

2
J122

]

,

c
(e)
L6 = −C1

[

2xb + J110 − (1 + x2)J111 − y2(2 + z1 − z2)J121 +
y2(2 − y2)

2
J122

+
y2(y2 + 2x2)

2
J213 +

z1(z1 + y2)

z1 − y2
L2 −

2z2
1y2

z1 − y2
L3

]

,

c
(e)
L8 = −C1

[

4J111 − 2y2 (J121 + J122 + 2J212 + J213) + y2
2 (J223 + 2J314)

]

,

c
(e)
L10 = C1y2 [2J122 − y2 (2J133 + J224)] ,

c
(e)
R1 = −c

(e)
L1 + C1

[

I10 − y2J110 −
y2
2

2
(J212 − J213)

]

,

c
(e)
R2 = −1

2
c
(e)
R1 +

C1

2
y2

[

−2J111 + y2J121 + (2 − z2)J211 −
1 + z2 − 3x2

2
J212

]

,

c
(e)
R3 = −C1y2 [J211 − J212] ,

c
(e)
R4 = −C1 [J110 − J111 + y2 (J121 − J122)] ,

c
(e)
R6 = C1 [J110 − 2J111 + y2 (J121 + J212)] ,

c
(e)
R8 = C1

[

2J110 − 2y2 (J121 + 2J211) + y2
2 (J222 + 2J313)

]

,

c
(e)
R10 = −C1y2 [4J121 − 2J122 − y2 (2J132 + J223)] , (A.15)
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where Jmnℓ and Ln are defined as

Jmnℓ =

∫ 1

0

tℓdt

[1 − z2t + x2t2]m[y2t + z1(1 − t)]n
, (A.16)

Ln =

∫ 1

0

dt

[y2t + z1(1 − t)]n
ln

(

y2t
2

1 − z2t + x2t2

)

. (A.17)

• diagram-(f)

c
(f)
L1 =

CA

2

[

xb ln (z2
3xb) − xb−(1+z3)J

′
110+

1 + x2

2
J ′

111 +
y2(2 + z3)

2
J ′

121−
z2y2

2
J ′

122

+y2J
′
212 −

y2(1 + x2)

2
J ′

213 −
z3(y2 − 3z3)

2(y2 − z3)
L′

2 −
y2z

2
3

y2 − z3
L′

3

]

,

c
(f)
L2 =

CA

4

[

xt

(

ln ǫ2+lnxb

)

−xb ln (z2
3xb)+xt+xb + (1 + z3)J

′
110−

2 − z2 + 2x2

2
J ′

111

−y2(z2+z3)

2
J ′

121+x2y2J
′
122−

y2

2
J ′

211+
x2y2

2
J ′

213+
3

2
(y2 + z3)L

′
2−y2z3L

′
3

]

,

c
(f)
L3 =

CA

2

[

xb ln (z2
3xb) −xb −2z3J

′
110−

z2−2z3−2x2

2
J ′

111− y2J
′
121

+
y2(3z2+z3−4x2)

2
J ′

122 − y2(1 − z3)J
′
211

+
y2(3 − 2z3 − x2)

2
J ′

212 −
z3(y2 − 3z3)

2(y2 − z3)
L′

2 −
y2z

2
3

y2 − z3
L′

3

]

,

c
(f)
L4 = −CA

2

[

xt

(

ln ǫ2 + ln xb

)

+ xt + J ′
110 − (z2 − x2)J ′

111 −
y2(2 + z2)

2
J ′

121

+
y2(1 + 2z2 − x2)

2
J ′

122 +
y2(3y2 − z3)

2(y2 − z3)
L′

2 −
y2
2z3

y2 − z3
L′

3

]

,

c
(f)
L6 =

CA

2

[(

xt−
xb

2

)

(

ln ǫ2+ln xb

)

+xt+xb+J ′
110−

1+z2+x2

2
J ′

111−
y2(z2+z3)

2
J ′

121

+
y2(2z2−z3)

2
J ′

122−
y2(2−z2)

2
J ′

212+
y2(1+x2)

2
J ′

213+
3y2+2z3

2
L′

2 − y2z3L
′
3

]

,

c
(f)
L8 =

CA

2

[

4J ′
111 − 2y2

(

3J ′
122 + 2J ′

212 + J ′
213

)

+ y2
2

(

2J ′
133 + J ′

223 + J ′
224 + 2J ′

314

)]

,

c
(f)
L10 =

CA

2
y2

[

2J ′
122 − y2

(

2J ′
133 + J ′

224

)]

,

c
(f)
R1 = −c

(f)
L1 +

CA

2

[

I10 −
y2

2

{

z3(J
′
121 − J ′

122) + J ′
211 − (2 + y2)J

′
212 + J ′

213

}]

,

c
(f)
R2 = −c

(f)
L2 +

CA

4

[

I10 −
y2 + 4z3

2
J ′

110 − (y2 − 2z3)J
′
111 −

y2
2

2
J ′

121

−y2(1 − z2)

2
J ′

211 −
x2y2

2

(

2J ′
212 − J ′

213

)

]

,

c
(f)
R3 = −CA

2

[

J ′
110 − J ′

111 − 2y2

(

J ′
121 − J ′

122 + J ′
211 − J ′

212

)]

,

c
(f)
R4 =

CA

2

[

J ′
110 − J ′

111 − 2y2

(

J ′
121 − J ′

122

)]

,
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c
(f)
R6 = −CA

2

[

J ′
110 − 2J ′

111 + y2

(

J ′
122 + J ′

212

)]

,

c
(f)
R8 = −CA

[

J ′
110 − 2y2

(

J ′
121 + J ′

211

)

+ y2
2

(

J ′
133 + J ′

223 + J ′
313

)]

,

c
(f)
R10 = −CA

2
y2

[

4J ′
121 − 2J ′

122 − y2

(

2J ′
133 + J ′

223

)]

, (A.18)

where J ′
mnℓ and L′

n are given by replacing z1 to z3 in Jmnℓ and Ln in eq. (A.16) and

eq. (A.17), respectively.

We note that the sum of the IR singular terms from the diagrams (c) and (f) is

exactly proportional to the tree-level amplitude, therefore they do not contribute to the

T -odd distribution.

B. Loop scalar functions

As a check of our calculation, we calculate the one-loop coefficients in terms of the loop

scalar functions, the Passarino and Veltman’s B, C, D functions [33].

For each diagram, we assign the masses and the momenta of the scalar function,

following the FF notation [34], and take only the imaginary part of the functions. In this

assignment we explicitly present the b-quark and gluon mass, mb,g, for clarity, even though

we take the massless limit in our analysis.

• diagram-(a) Defining Bi = ImBi(m
2
g,m

2
b ; p2

bg) for i=0,1 with p2
bg = (pb + pg)

2, the

coefficients are expressed as

−c
(a)
L1 = 2c

(a)
L2 = −c

(a)
L3 = c

(a)
R1 = −2c

(a)
R2 = CF xb

[

B0 + B1

]

/π. (B.1)

• diagram-(b) Defining C
(b)
i = Im Ci(m

2
g,m

2
b ,m

2
b ; p2

bg, p
2
g, p

2
b) for i=0,11,12,21-24, the

coefficients are expressed as

−c
(b)
L1 = 2c

(b)
L2 = −c

(b)
L3 = c

(b)
R1 = −2c

(b)
R2

= C1

[

− C0 − 2C11 + C12 − C21 + C23 − 2C24/p
2
bg

]

m2
t /π,

c
(b)
L6 = C1

[

− C0 − 2C11 + C12 − C21 + C23

]

m2
t /π. (B.2)

• diagram-(c) Defining C
(c)
i = Im Ci(m

2
g,m

2
b ,m

2
g; p2

bg, p
2
b , p

2
g) for i=0,11,12,21-24, the

coefficients are expressed as

−c
(c)
L1 = 2c

(c)
L2 = −c

(c)
L3 = c

(c)
R1 = −2c

(c)
R2

= CA

[

C0 − C11 − 2C21 + 2C23 − 12C24/p
2
bg

]

m2
t /4π,

c
(c)
L6 = CA

[

2C0 + 4C11 − 3C12 + 2C21 − 2C23

]

m2
t /4π. (B.3)

• diagram-(d) Defining C
(d)
i = Im Ci(m

2
g,m

2
t ,m

2
b ; p2

t , q
2, p2

bg) for i=0,11,12,21-24, the

coefficients are expressed as

c
(d)
L1 = − 2c

(d)
L2
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= − CF xb

[

− (2−z2)C0−(3−z2)C11+(z2−x2)C12−C21

− x2C22+z2C23 − 2C24/m
2
t

]

m2
t /π,

c
(d)
L3 = − CF xb

[

− (1−x2)(C0 + C11)−x2(C22−C23)−2C24/m
2
t

]

m2
t /π,

c
(d)
R1 = − 2c

(d)
R2

= − CF xb

[

(1 − x2)C0 + (2 − x2)C11 − (z2 − x2)C12 + C21

+ x2C22 − z2C23 + 2C24/m
2
t

]

m2
t /π,

c
(d)
R3 = − CF xb

[

− C11 + C12 − C21 + C23

]

m2
t /π. (B.4)

• diagram-(e) Defining D
(e)
i = ImDi(m

2
g,m

2
t ,m

2
b ,m

2
b ; p2

t , q
2, p2

g, p
2
b , p

2
bg, (q + pg)

2) for

i=0,11-13,21-27,31-313, the coefficients are expressed as

c
(e)
L1 =C1

[

z1D0 + (1 + z1)D11 − D12 + 2(D27 + D312 − D313)/m
2
t

]

m4
t /π,

c
(e)
L2 =C1

[

− z1D0−(1+z1)D11+D12+D21+(z2−x2)D22−(1−z2+x2)D23−2D24

+ z1D25 − (z2 − z3 − 2x2)D26 − 2D27/m
2
t − x2D32 − D34 + D35 + z2D36

− z3D37 − (1 − z1 − 2x2)D38 + (1 − z1 − x2)D39 − (z2 − z3)D310

− 6(D312 − D313)/m
2
t

]

m4
t /2π,

c
(e)
L3 =C1

[

z1D0+(1+2z1)D11+(1−z1−2z2+2x2)D12 − (1 − z2 + x2)(2D13 − D23)

+ (2 + z1)D21 + x2D22 + (1 − z1 − 3z2 + 2x2)D24 − (4 − 2z2 + x2)D25

+ (2z2 − 3x2)D26 + D31 − z2D34 − (1 + z3)D35 + x2(D36 − D38) + z3D37

− (1−z1−x2)D39+(1−z1+z2−x2)D310+4(D27+D311−D313)/m
2
t

]

m4
t /π,

c
(e)
L4 =C1

[

− D11 + (z2 − x2)D12 + (1 − z2 + x2)D13 − D21 − x2D22 + z2D24 + D25

− (z2 − x2)D26 − 2(D27 + D313)/m
2
t

]

m4
t /π,

c
(e)
L6 =C1

[

D11 + (1 − 2z2 + x2)D12 + (z2 − z3 − x2)D13 + 2D21 + x2D22

− (1 − z2 + x2)D23 − 2z2D24 + (z1 − z3)D25 + (1 − z1)D26 + D35 − z3D37

+ x2D38 + (1 − z1 − x2)D39 − z2D310 + 2(D27 − D312 + 3D313)/m
2
t

]

m4
t /π,

c
(e)
L8 =C1

[

2(D12−D13+D24)+D22+D23−D25−3D26+D36−D38+D39−D310

]

2m4
t /π,

c
(e)
L10 =C1

[

− D23 + D26 + D38 − D39

]

2m4
t /π,

c
(e)
R1 =C1

[

− z1D0 − (2z1 + z2 − x2)D11 − (1−z1−2z2+2x2)D12 + (1 − z2 + x2)D13

− D21 − x2D22 + z2D24 + z3D25 − (1 − z1 − x2)D26

− 2(2D27 + D311 − D313)/m
2
t

]

m4
t /π,

c
(e)
R2 =C1

[

z1D0 + (2z1 + z2 − x2)D11 + (1 − z1 − 2z2 + 2x2)D12 + (2 − z2)D21

− (1 − z2 + x2)(D13 − D23) − (z2 − 2x2)(D24 − D26) − (3 − 2z2 + x2)D25

+ D31 − z2D34 − (1 + z3)D35 + x2(D36 − D38) + z3D37 − (1 − z1 − x2)D39

+ (1 − z1 + z2 − x2)D310 + 2(2D27 + 3D311 − 3D313)/m
2
t

]

m4
t /2π,

c
(e)
R3 =C1

[

− D21 + D24 + D25 − D26

]

m4
t /π,
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c
(e)
R4 =C1

[

D11 − D12 − D25 + D26

]

m4
t /π,

c
(e)
R6 =C1

[

− D11 + 2D12 − D13 + D24 − D26

]

m4
t /π,

c
(e)
R8 =C1

[

− D11 + D13 − 2D21 − D23 + 3D25 − D34 − D39 + 2D310

]

2m4
t /π,

c
(e)
R10 =C1

[

D23 − 2D25 + D26 + D39 − D310

]

2m4
t /π. (B.5)

• diagram-(f) Defining D
(f)
i = Im Di(m

2
g,m

2
t ,m

2
b ,m

2
g; p2

t , q
2, p2

b , p
2
g, p

2
bg, (q + pb)

2) for

i=0,11-13,21-27,31-313, the coefficients are expressed as

c
(f)
L1 = − CA

[

− 2z3D0 − 2(1 + z3)D11 − (2 − 3z2 + 2x2)D12+(2+z1−2z2+2x2)D13

− 3D21 + (z2 − 3x2)D22 − (2 − 3z2)D24 + 3z1D25+(3−2z1−3z2+3x2)D26

− x2D32 − D34 + z2D36 − (1 − z3 − x2)D38+z1D310−2(2D27+D312)/m
2
t

]

× m4
t /4π,

c
(f)
L2 = − CA

[

2z3D0 + 2(1 + z3)D11 + (3 − 4z2 + 3x2)D12 − (2 + z1 − 2z2 + 2x2)D13

+ 5D21+3x2D22−4z2D24−5z1D25+4(1−z3−x2)D26+6D27/m
2
t

]

m4
t /8π,

c
(f)
L3 = − CA

[

− 2z3(D0 + 2D11) + (z3 − z1)D12 + z1D13 − (1 + 2z3)D21 − 3x2D22

+ 2(1−z1+x2)D24−2(1−2z1−z2+x2)D25−(1−z3−x2)(3D26+D310)

− D31 + z2D34 + z1D35 − x2D36 − 2(7D27 + 5D311)/m
2
t

]

m4
t /4π,

c
(f)
L4 = − CA

[

− 2D11+2(z2−x2)D12 + (1 − z2 + x2)(D13 + D23) − 2D21 − 2x2D22

+ 2z2D24 + (2 − 3z2)D25 + (z2 + 2x2)D26 + D35 − z1D37 + x2D38

+ (1 − z3 − x2)D39 − z2D310 − 2(2D27 − 5D313)/m
2
t

]

m4
t /4π,

c
(f)
L6 = − CA

[

2D11+(3−5z2+3x2)D12 − 2(z1−z2+x2)D13 + 4D21−(z2−4x2)D22

+ z1D23+(2 − 5z2)D24−2(1+2z1−z2)D25 − (3−2z1−4z2+5x2)D26

+ x2D32+D34−D35−z2D36+z1D37+(1−z3−2x2)D38−(1−z3−x2)D39

− (z1 − z2)D310 + 2(3D27 + D312 − D313)/m
2
t

]

m4
t /4π,

c
(f)
L8 = − CA

[

2(D12 − D13 + D24 − D25) + D22 − D26 + D36 − D310

]

m4
t /π,

c
(f)
L10 = − CA

[

D23 − D26 − D38 + D39

]

m4
t /π,

c
(f)
R1 = − CA

[

2z3D0+2(1+2z3)D11−(2−2z1+z2−2x2)D12−(2+z1−2z2+2x2)D13

+ 5D21+3x2D22−4(z2D24+z1D25)+(1−z3−x2)(3D26 + D310) + D31

− z2D34 − z1D35 + x2D36 + 2(5D27 + D311)/m
2
t

]

m4
t /4π,

c
(f)
R2 = − CA

[

− 2z3D0 − (11 − 4z1 − 5z2 + x2)D11 + (2 − 2z1 + z2 − 2x2)D12

+ (2 + z1 − 2z2 + 2x2)D13 − (5 + z2)D21 − 5x2D22 + (5z2 + 2x2)D24

− (1 − 6z1 − z2 + x2)D25 − 5(1 − z3 − x2)D26 − 12D27/m
2
t

]

m4
t /8π,

c
(f)
R3 = − CA

[

− D11 + D12 − 2(D21 − D24)
]

m4
t /2π,

c
(f)
R4 = − CA

[

D11 − D12 + 2(D25 − D26)
]

m4
t /2π,

c
(f)
R6 = − CA

[

− D11 + 2D12 − D13 + D24 − D25

]

m4
t /2π,
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c
(f)
R8 = − CA

[

− D11 + D13 − 2(D21 − D25) − D34 + D35

]

m4
t /π,

c
(f)
R10 = − CA

[

− D23 + 2D25 − D26 − D37 + D310

]

m4
t /π. (B.6)
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